Главная > Физика > Дифференциальные и интегральные уравнения математической физики
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3. Интегральное уравнение диффузии и его связь со статистикой.

В гл. ХIII, § 2, 6, мы исследовали интегральное уравнение (56) для теплопроводности и диффузии. Из метода его вывода ясно, что это уравнепие применимо и в более общем случае, рассматриваемом в этом пункте. Мы увидим, что в действительности оно имеет еще более общее значение. В самом деле, согласно принципу, изложенному в гл. ХIII, § 2, 3, функции, входящие в это уравнение, можно рассматривать как некоторые вероятности. Поэтому, если состояние некоторой физической системы определяется переменной зависящей от времени статистическим образом, т. е. совершающей некоторого рода броуновское движение, то это движение опять-таки будет описываться интегральным уравнением (51).

Если есть вероятность того, что система в момент времени находится между вероятность того, что система в течение времени переходит из начального положения, лежащего между конечное положение, лежащее между то удовлетворяет линейному интегральному уравнению:

ядро которого вообще говоря, несимметрично.

В случае обыкновенного броуновского движения, при отсутствии внешних сил, ядро симметрично относительно и имеет вид, определенный в гл. ХIII, §2, (56а). Там же указано решение "уравнения (8) в этом случае. Чтобы найти решение в общем случае, целесообразно преобразовать интегральное уравнение (8) в дифференциальное уравнепие следующим способом.

Введем сначала в уравнепие (8) вместо новую переменную представляющую собой смещение системы за время Тогда уравнение (8) примет вид:

где выражение очевидно, равно вероятности того, что система сместится за время из начального положения х на расстояние между и Примем теперь, что очень мало, и разложим левую часть (9) по степеням

с точностью до членов первого порядка, а правую часть по степеням у. Тогда мы получим

где величины имеют значение:

Из определения функции как вероятности непосредственно следует, что Предположим теперь, что существуют предельные значения:

Тогда из (10) получается дифференциальное уравнение для функции

где есть оператор

Это уравнение называется в статистическоё физике дифференциальным уравнением Фоккера-Планка Оно имеет самые разнообразные применения.

Если механическая система испытывает беспорядочные флуктуации иод действием внешних сил, с одной стороны, и вследствие теплового движения молекул — с другой, как это имеет место при обыкновенном броуновском движении, то функция согласно (11) и (12), есть средняя скорость приобретаемая частицами под действием внешних сил. Далее, в этом случае а все при тождественно равны нулю. Таким, образом, (13) переходит в обобщенное уравнение диффузии (6), где есть коэффициент диффузии. Согласно (11) и (12):

т. е. равно среднему квадрату смещения, деленному на соотношение, которое мы уже встречали в гл. XIII, § 2, (23) под названием формулы Эйнштейна.

Если внешние силы отсутствуют, т. е. если функция в (8) симметрична относительно то функция согласно (12), тождественно равна нулю, и (13) переходит в обыкновенное дифференциальное уравнение диффузии гл. XIII, § 1 (22). Поэтому всякая функция, определяемая интегральным уравнением (50) гл. § 2, должна одновременно удовлетворять уравнению (22) гл.

Если же внешние силы не равны нулю, то можно найти стационарное решение и уравнения Фоккера-Планка, соответствующее состоянию, устанавливающемуся через достаточно большой промежуток времени независимо от начального состояния. В этом случае и есть вероятность пребывания системы в промежутке между или относительное число тождественных систем, находящихся в этом интервале, если в начальный момент они были распределены

лены произвольно. Если положить, что левая часть равна нулю, и в соответствии с то можно найти первый интеграл

Из требования, чтобы на бесконечности функция и вместе со своей первой нроизводной равнялась нулю, вытекает, что постоянная интегрирования равна нулю. Проинтегрировав еще мы получим:

где есть работа, которую необходимо совершить против внешних сил, чтобы перевести систему из положения равновесия в положение статистически-механическая постоянная, а - вторая постоянная, которая определяется из условия, что интеграл выражения (16) по всем возможным значениям х должен равняться единице. Соотношение (16) называется распределением Больцмана в играет в статистической механике большую роль.

<< Предыдущий параграф Следующий параграф >>
Оглавление