Главная > Физика > Введение в физику (А. И. Китайгородский)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА 6. БЕГУЩИЕ ВОЛНЫ

§ 32. Распространение деформации

Каждое тело обладает в той или иной степени упругостью, т. е. способностью восстанавливать свою форму, искаженную в результате кратковременного действия силы. Эта способность тела является причиной того, что всякое механическое действие передается телом с конечной скоростью. Если бы существовал абсолютно твердый, неспособный деформироваться стержень, то он мог бы двигаться только как целое, действие силы распространялось бы по

такому телу мгновенно. Абсолютно пластическое тело, деформирующееся без малейшего восстановления формы, было бы неспособно к какой бы то ни было передаче механического действия.

В упругом теле деформация передается последовательно от одной точки тела к соседней. Если стержню нанесен сжимающий удар молотком, то на конце стержня образуется уплотнение, которое распространится с определенной скоростью с вдоль тела. Если в твердом теле создан местный кратковременный изгиб, то он также будет передаваться с конечной скоростью по твердому телу. То же самое справедливо для любой деформации. Пробегающие по телу при разных механических действиях деформации обычно демонстрируют при помощи пружин (рис. 56)

Рис. 56.

Упругостью сжатия и растяжения обладают как твердые тела, так и жидкие и газообразные. Поэтому в любых телах возможна передача этих деформаций. Что же касается деформаций сдвига, кручения, изгиба, то такие деформации могут передаваться только твердыми телами, обладающими соответствующей упругостью. При деформации сжатия и растяжения движения частиц происходят в том же направлении, в котором передается механическое действие. В подобных случаях мы говорим о продольном распространении деформации. При сдвиге, изгибе, кручении направление движения частиц может образовать, вообще говоря, произвольный угол с направлением, по которому передается энергия.

Всегда возможно выделить направление, в котором передается механическое действие, а затем разложить смещение частицы тела по трем взаимно перпендикулярным осям, одна из которых лежит вдоль линии распространения, а две других — в перпендикулярной плоскости. Поэтому в наиболее сложном случае можно рассматривать распространяющуюся деформацию как совокупность трех движений: двух поперечных и одного продольного.

Скорость распространения упругой деформации зависит от механических свойств тела; ее, как показывает теоретическая физика, можно связать с другими физическими константами тела. Так, для продольных волн скорость распространения выражается простой формулой:

Здесь плотность тела, а к — сжимаемость. Большая плотность тела приводит к увеличению инертности частиц тела и,

следовательно, уменьшает скорость распространения упругих волн. Малые сжимаемости говорят о том, что даже малым деформациям соответствуют большие упругие силы. Это обстоятельство приводит к увеличению скорости распространения деформации.

В таком виде этой формулой пользуются обычно для жидкостей. Так, например, вода при изменении давления на 1 атм сжимается на своего объема. Значит, сжимаемость, равная (см. стр. 138) по определению есть Плотность воды Отсюда для скорости распространения деформации в воде получим

Для газов формулу скорости целесообразно преобразовать. Так как процесс передачи уплотнения в газе весьма быстр, то сжатия и разрежения газа можно считать адиабатическими, т. е. происходящими без теплообмена. Ниже (стр. 150) будет получено уравнение адиабатического процесса, из которого легко вывести связь коэффициента сжимаемости с давлением газа: где Тогда с Для идеального газа плотность масса моля газа, а — его объем) будет пропорциональна дроби (так как скорость распространения деформации в газе

Здесь а — коэффициент, значение которого легко вычисляется при помощи уравнений, рассматриваемых позднее (стр. 149).

Таким образом, скорость распространения деформации в газе, в том числе и скорость распространения звуковых волн, о которых речь пойдет дальше, пропорциональна корню квадратному из температуры и не зависит от давления газа, Интересна зависимость от молекулярного веса: скорость распространения деформации

в водороде равна в то время как в воздухе мы имеем хорошо знакомое число

Для продольных волн, распространяющихся в твердом теле, заменяют обычно коэффициент сжимаемости на модуль упругости. Так как по определению модуль упругости

то очевидно, что при отсутствии поперечных движений поскольку линейное относительное сжатие будет равно объемному.

Формула скорости запишется в виде

Насколько хорошо она выполняется, можно судить по следующим примерным числам:

(см. скан)

Проверку этой формулы надо проводить, изучая скорость распространения звука в тонких стержнях. Дело в том, что более глубокое рассмотрение вопроса показывает, что формула должна быть справедлива только для таких тел. Для тел иной формы, а также для распространения звука в сплошной среде теория приводит к другим выражениям, которые мы приводить не будем.

Следует также заметить, что таблица приведенных величин может служить лишь для ориентировки. Скорости звука в разных сортах стекол, разных сортах дерева, стали и т. д. могут существенно различаться.

<< Предыдущий параграф Следующий параграф >>
Оглавление