Главная > Физика > Введение в физику (А. И. Китайгородский)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 42. Собственные колебания стержней

Ударом или иным способом в каждом твердом стержне можно возбудить продольную упругую волну, распространяющуюся вдоль его длины. От противоположного конца стержня эта волна отразится, и, таким образом, весь стержень придет в колебательное состояние, изображаемое стоячей волной. Это колебательное состояние будет свободным, так как оно возникнет благодаря кратковременному импульсу и будет далее продолжаться без действия внешних сил. Ряд сведений о характере этих свободных колебаний мы получим, если положим известной длину стержня и укажем способ его закрепления. Длина стержня и способ его закрепления дают нам так называемые граничные условия. Они сводятся к следующему: в закрепленном месте стержня существует узел стоячей волны, на открытом конце стержня образуется пучность стоячей волны.

Рассмотрим несколько способов возбуждения продольных свободных колебаний в стержне с длиной

Стержень, закрепленный в обоих концах.

В этом случае на концах стержня должны образоваться узлы волны смещений. Так как расстояние между узлами равно половине длины волны, то возможные длины волн связаны с длинои стержня условием т. е. где любое целое число.

Используя для скорости упругой волны выражение и вспоминая связь частоты с длиной волны, получим выражение для собственных частот свободных продольных колебаний стержня

Прежде всего необходимо подчеркнуть принципиально новый для нас результат. Сплошное тело имеет не одну, а множество собственных (характеристических) частот колебания. Соответственное этим разнообразны возможные свободные колебания стержня. Стержень может также совершать негармонические колебания с любым спектром, составленным из частот

Частота является основной частотой колебания стержня. Ей соответствует колебательное движение с условием Это значит, что при основном колебании центр стержня лежит в пучности стоячей волны, а узлов между концами стержня нет. Колебанию во втором обертоне (вторая гармоника) соответствует условие Теперь в центре стержня имеется узел. Если возбуждена третья гармоника, то между концами стержня будут лежать два узла, и т. д.

Пример. Для железного стержня длиной основная частота Гц.

Стержень, открытый с обоих концов.

Если стержень подвесить на нитях, а затем возбудить в нем колебания, то возникшая стоячая волна должна удовлетворять условию: на обоих концах стержня существует пучность. Так же как и в предыдущем случае, между длиной стержня и длинами волн возникает связь: Следовательно, формула собственных частот будет той же самой.

Отличие от предыдущего случая заключается в распределении узлов и пучностей. В основном колебании центр стержня покоится (узел). Если возбуждена вторая гармоника, то в центре стержня будет пучность, далее через четверть длины волны — узлы и на краях — пучности.

Стержень, закрепленный в одном конце.

В этом случае на одном конце должен быть узел, а на другом — пучность. При колебании с основной частотой стержень имеет форму, соответствующую одной четверти периода синусоиды. Так как расстояние между узлом и пучностью равно то связь между длинами волн и длиной стержня дается условием

Собственные частоты колебаний такого стержня выразятся формулой

Если в первых двух случаях частоты относились друг к другу, как целые числа, то теперь отношение частот дается отношением нечетных чисел.

Стержень, закрепленный в середине, будет в этом месте иметь узел, а на концах — пучности. Задача ничем не отличается от рассмотренной.

Граничные условия, которые использовались при рассмотрении колебательного состояния стержней, являются предельным случаем граничных условий отражения волн, изложенных на стр. 111., Как было выяснено ранее, при отражении от границы, отделяющей среду от среды с большим сопротивлением, происходит отражение волны смещения с потерей полволны. Если стержень закреплен, то волна вовсе не проникает во вторую среду. В этом случае можно говорить о бесконечно большом сопротивлении второй среды. Коэффициент отражения становится равным единице и отражение происходит с лотерей полволны. Нетрудно видеть, что это соответствует наличию узла на границе двух сред. Отражение волны от незакрепленного конца стержня соответствует отражению от среды с нулевым сопротивлением. Равенство коэффициента отражения единице - и отсутствие потери полволны приводят к необходимости существования пучности на такой границе.

Продольные собственные колебания могут быть также возбуждены в столбах жидкости и столбах газа.

Поперечные собственные колебания легко возбудить в зажатой и натянутой струне. Распределение узлов и пучностей будет, разумеется, таким же, как и для закрепленного с обоих концов стержня. Набор частот выразится формулой, аналогичной приведенной для стержня, с тем лишь различием, что в выражении скорости поперечной волны в струне надо заменить на натяжение струны, т. е. на частное от деления силы, натягивающей струну, на поперечное сечение струны.

<< Предыдущий параграф Следующий параграф >>
Оглавление