Главная > Физика > Введение в физику (А. И. Китайгородский)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 48. Архитектурная акустика

В одних помещениях произносимая речь звучит неразборчиво, хотя и громко, в других залах оратору надо возвышать голос, чтобы быть услышанным. Представляют интерес поиски физических констант помещения, характеризующих его акустические свойства.

Опыт показывает, что важнейшим фактором такого рода является так называемое время реверберации — время, в течение которого произнесенный звук ослабляется в миллион раз по отношению к первоначальной силе. В акустическом отношении помещение наилучшее, время реверберации составляет Если меньше 3 с, помещения считают хорошими. Если же время реверберации превосходит 5 с, то акустика такого помещения очень плоха, она характеризуется «гулким звучанием».

Произнесенный в каком-либо месте большого зала звук отражается от стенок, пола и потолка комнаты, отражается от мебели, от драпировок, от одежды сидящих в зрительном зале людей. Если при каждом отражений звук теряет большую долю энергии, то затухание звука произойдет очень быстро. Время реверберации в этом случае очень мало, звук будет «глухим». Гулкость возникнет в том случае, если звук будет многократно отражаться с малым затуханием. Слушатель будет улавливать звуковую волну, непосредственно достигшую уха, двукратно отраженную, трехкратно отраженную и т. д. Если время между приходом этих звуковых волн не превысит то ухо услышит не два или три звука, как в хорошо известном явлении эха, а воспримет размазанный и, следовательно, нечеткий звук.

Очевидно, что вопрос о времени затухания звука определяется поглощением его на окружающих телах. Так как звук отражается многократно, то через короткое время постоянного звучания какого-либо источника все помещение более или менее равномерно заполнится звуковой, т. е. колебательной, энергией. Через короткий срок установится равновесие между энергией, отдаваемой источником, и энергией, поглощаемой средой. Заметим, кстати, что при отсутствии поглощения звуковая энергия в закрытом помещении возрастала бы неограниченно при постоянном звучании источника.

Представим себе, что источник звука прекратил свою работу. Тогда будет происходить лишь одно явление, а именно, поглощение звуковой энергии поверхностью тел, находящихся в помещении. Каждый из материалов, принимающий участие в этом процессе, обладает характерным для него коэффициентом поглощения а. Если в помещении имеется открытое окно, то для него можно принять коэффициент поглощения равным 1, так как звук полностью уходит (а это все равно, что поглощается) из помещения. Для гладкой и твердой стены коэффициент а близок к нулю (для бетона 0,015). Теперь поглощение звука, характерное для всего помещения, можно описать величиной в этой сумме учитываются все поверхности, ограничивающие помещение. Теория

показывает, что время реверберации зависит от величины и от объема помещения а именно, В этой формуле объем надо выразить в кубических метрах, а величину в квадратных метрах -размерный коэффициент).

Нетрудно с помощью последней формулы найти типичные значения времен реверберации. Коэффициент поглощения для бетона мы привели только что; не намного больше энергии поглощают стекло, дерево, штукатурка. Резкое увеличение поглощения происходит при внесении в помещение мягких материалов. Достаточно сказать, что одежда одного человека поглощает столько же звука, сколько стены. Для мягких материалов коэффициенты поглощения колеблются от 0,5 до 0,9. Для решения акустических проблем при строительстве зданий большое значение имеют пористые материалы, коэффициент поглощения которых может приблизиться к а для Мягких материалов (пеностекло, пенобетон).

<< Предыдущий параграф Следующий параграф >>
Оглавление