Главная > Физика > Введение в физику (А. И. Китайгородский)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 63. Принцип возрастания энтропии

Как уже говорилось, обратимых процессов, строго говоря, не существует, хотя с точностью, доступной опыту, можно осуществить множество процессов, практически неотличимых от обратимых. Имеются, однако, примеры процессов, которые всегда односторонни и уже поэтому никоим образом не могут быть обращены. Так, например, газ может расшириться сам по себе, но не может сжиматься без приложения внешних сил. Тепло может самопроизвольно переходить от горячего тела к холодному и только при затрате работы (например, электроэнергии) может переходить от холодного тела к более нагретому. При трении кинетическая энергия макроскопического движения всегда превращается во внутреннюю энергию, но никогда не происходит самопроизвольный обратный процесс. Необратимость всех остальных процессов в конечном счете связана с тем, что в каждом из них в той или иной степени присутствует один из перечисленных односторонних процессов. В реальных процессах невозможно избежать ни самопроизвольных расширений, ни трения, ни теплового рассеяния.

Нет ли какого-нибудь общего признака у всех перечисленных односторонних процессов? Оказывается, есть: этот признак состоит в том, что во всех односторонних процессах возрастает энтропия.

В случае теплообмена между двумя телами общее (всей системы) изменение энтропии равно

где тепло, полученное более холодным телом, тепло, потерянное более горячим телом.

Если больше то так как мы считаем положительным тепло, сообщенное телу. Значит,

т. е. при теплообмене общая энтропия системы, в которой произошел теплообмен, возрастает.

Другой случай. Внутри сосуда с газом происходит интенсивное механическое движение (скажем, вертится колесо). Объем не меняется, температура растет, поэтому энтропия изменится на т. е. возрастет.

Наконец, при расширении в пустоту при неизменной температуре прирост энтропии опять-таки положительный.

Итак, во всех односторонних процессах энтропия системы возрастает.

Нетрудно понять, какое значение имеет этот вывод для всех необратимых процессов. Так как каждый необратимый процесс сопровождается односторонними явлениями, идущими с повышением

энтропии, то прирост, энтропии у необратимого процесса будет завышен против того прироста, который имел бы место при обратимом переходе. Пусть тепло, полученное телом при температуре в интересующем нас необратимом процессе. Если бы процесс был обратимым, то прирост энтропии равнялся бы в реальном процессе прирост энтропии будет больше этой величины:

Если система теплоизолирована, то и предыдущее утверждение приобретает вид

в теплоизолированной системе возможны лишь процессы, идущие с возрастанием энтропии.

Вполне понятно, что энтропия вместе с внутренней энергией являются важнейшими функциями, определяющими термодинамический процесс. Можно сказать, что энтропия является директором-распорядителем процесса, а внутренняя энергия является его бухгалтером: энтропия дпределяет направление протекания процесса, энергия «оплачивает расходы» на его проведение.

Если в предыдущие формулы ввести вместо знака знак краткой формулой запишется закон энтропии как для обратимых, так и для необратимых процессов:

Эта формула передает содержание второго начала термодинамики. Для замкнутых систем второе начало говорит: энтропия теплоизолированной системы возрастает или остается неизменной.

Целесообразно объединить оба начала термодинамики одной формулой

удобной для рассмотрения всех практических задач термодинамики.

Принцип возрастания энтропии относится к закрытым системам. Если же система общается со средой, другими словами, если речь идет об открытой системе, то ее энтропия может, разумеется, и убывать.

Ниже будет показано, что процессы молекулярного упорядочения связаны с уменьшением энтропии. Живой организм из неупорядоченной системы малых молекул, получаемых в процессах питания и дыхания, конструирует высокоорганизованные постройки — биологические макромолекулы (стр. 595). При этом энтропия организма падает.

Если представить себе замкнутую систему организм+среда, энтропия которой обязана расти, то ясно, что энтропия среды должна возрастать, перекрывая уменьшение энтропии организма.

Возрастание энтропии среды происходит за счет выделений организма.

Если процесс стационарной, то

Можно сказать, что жизнедеятельность организма состоит в пропускании через себя потока энтропии вещества. При этом энтропия вещества, входящего в организм, меньше энтропии, отдаваемой среде, — организм деградирует продукты питания.

Примеры. 1. В примере на стр. 57 мы рассмотрели неупругое столкновение пули с баллистическим маятником и выяснили, что при ударе в системе пуля — маятник исчезает механической энергии. Это значит, что было необратимым образом передано маятнику от пули посредством теплопроводности. Если предположить, что процесс был изотермическим (т. е. теплопроводность маятника чрезвычайно велика) и температура системы, скажем, то в этом необратимом процессе энтропия системы возросла на

2. Детский резиновый мяч массой после падения с высоты подпрыгивает на от пола. В этом изотермическом процессе (пусть необратьмо передается т. е. энтропия системы мяч — пол возросла на

Если бы мяч и пол были абсолютно упругими, то энтропия не менялась бы и движение мяча продолжалось бы вечно.

3. Рассмотрим необратимый процесс передачи тепла от парового котла к кон денсатору. Пусть паровой котел находится при температуре а конден сатор — при При тепловой мощности котла ежесекундно от котла к конденсатору будет переноситься Для котла, теряющего теплоту, это будет отрицательным, т. е. его энтропия убывает; у конденсатора энтропия растет. Но так как то энтропия системы котел — конденсатор за каждую секунду возрастает на

<< Предыдущий параграф Следующий параграф >>
Оглавление