Главная > Физика > Введение в физику (А. И. Китайгородский)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 81. Быстрота выравнивания

Хорошо известно, что установление равновесия может происходить в самые различные сроки. Температура брошенного в воду раскаленного куска железа и температура воды уравняются очень быстро. Напротив, температуры воздуха и нагретого кирпича уравниваются медленно. В течение мгновений продиффундирует азот в кислороде, многими днями длится выравнивание концентраций раствора медного купороса. Также и выравнивание скоростей может

происходить в резко отличные времена, смотря по тому, идет ли речь о газе или о вязкой жидкости.

Универсального ответа (общей формулы) в отношении времен выравнивания дать нельзя, так как геометрия опыта сказывается на этих временах. Остывающее тело может иметь форму цилиндра или пластинки; диффундирующий газ в начальный момент может находиться внутри маленького сферического объема или может быть распределен вдоль какой-нибудь поверхности; внутреннее трение может наблюдаться в трубах разного сечения или в открытых водоемах. Подобные обстоятельства должны каждый раз учитываться особо, и расчет точных значений времен выравнивания является трудной математической задачей. Однако можно отвлечься от геометрических частностей и постараться решить вопрос в общей форме, если отказаться от цели получить точную формулу и удовлетвориться нахождением лишь пропорциональностей между физическими величинами. На этом пути физику помогают соображения о размерностях физических величин, которые должны быть связаны межд) собой.

Рассмотрим, например, явление диффузии. Ясно, что время выравнивания концентрации зависит, прежде всего, от размеров области, в которой происходит диффузия (характерная длина и от свойств диффундирующих веществ (характеризуемых коэффициентом диффузии D). Уравнение диффузии имеет вид Напишем для него уравнение размерностей:

Видим, что т. е. время выравнивания и не зависит от концентрации.

Отсюда мы имеем право сделать такое заключение. Любое строгое решение задачи о времени выравнивания концентрации при диффузионных процессах всегда приведет нас к уравнению

где постоянная безразмерная величина, зависящая от геометрических условий задачи. Величина от квадрата которой зависит скорость выравнивания концентрации, имеет смысл геометрического размера области, в которой происходит выравнивание. Значит, если концентрация в пределах одного сантиметра выравнивается, скажем, за 10 с то в пределах двух сантиметров она выравнивается за 40 с.

Таким же точно образом можно решить вопрос о выравнивании температуры. В основной закон этого явления входят количество тепла, коэффициент теплопроводности, температура и расстояние. Но приращение количества тепла в единице объема может быть пред ставлено в виде

удельная теплоемкость при постоянном давлении, плотность (таким образом, есть теплоемкость единицы объема). Поэтому между собой должны быть связаны следующие величины: температура, длина, время, плотность, теплоемкость и теплопроводность. Можно без труда проверить, что время не может зависеть от температуры и выражается через остальные величины единственным образом:

Значит, время выравнивания температуры выражается формулой

где через мы обозначили комбинацию констант — Величина носит название температуропроводности. Введение этого коэффициента вполне оправдано желанием сделать аналогичными формулы выравнивания концентрации и температуры. Коэффициенты диффузии и температуропроводности имеют одинаковую размерность и вполне аналогичны в рассмотренных двух явлениях выравнивания.

Мы видим, чем определяется остывание тела. Процесс идет тем медленнее, чем больше плотность и теплоемкость и чем меньше коэффициент теплопроводности.

Пример. Имеются два стержня одинаковых размеров из плавленого кварца и серебра. Для кварца т. е. Для серебра т. е. Это значит, что выравнивание температуры в серебряном стержне займет времени в 253 раза меньше, чем в кварцевом.

Как и для диффузии, для выравнивания температур характерна зависимость от квадрата расстояния: время выравнивания пропорционально квадрату линейного размера области.

Не повторяя аналогичных рассуждений, можно записать формулу для времени выравнивания скоростей движения частей жидкости или газа. Вполне естественно, что и ей может быть придан тот же вид:

Коэффициент определяющий быстроту выравнивания скоростей движения, равен он носит название кинетической вязкости.

Пример. Для воды т. е. для глицерина т. е. Это значит, что если успокоение какого-либо возмущения в глицерине происходит за 0,1 с, то такое же возмущение в воде успокоится примерно за 2 мин.

<< Предыдущий параграф Следующий параграф >>
Оглавление